

Reaktionen von 2,2,4,4-Tetrakis(trifluormethyl)-1,3-dithietan mit KNCS und KNCO – Struktur des Triphenylphosphan-Gold(I)-Komplexes eines Thiazolin-4-thiolats

Jörg Sundermeyer^a, Herbert W. Roesky^{*a}, Jürgen Lautner^b und Peter G. Jones^b

Institut für Anorganische Chemie der Universität Göttingen^a, Tammannstraße 4, D-3400 Göttingen

Institut für Anorganische und Analytische Chemie der Technischen Universität Braunschweig^b, Hagenring 30, D-3300 Braunschweig

Eingegangen am 15. August 1989

Key Words: Hexafluorothioacetone / Thiazolines / Gold complexes

Reactions of 2,2,4,4-Tetrakis(trifluoromethyl)-1,3-dithietane with KNCS and KNCO – Crystal Structure of a Triphenylphosphane Gold(I) Complex of a Thiazoline-4-thiolate

2,2,4,4-Tetrakis(trifluoromethyl)-1,3-dithietane (1) reacts with KNCS to yield the potassium salt of 4-mercapto-2,2,5,5-tetrakis(trifluoromethyl)- Δ^3 -thiazoline (2). An oxidative workup procedure results in the formation of the disulfide 6. The salt 2 reacts with methyl bromoacetate, benzyl bromide, 3-bromo-1-phenylpropene, and 1,3-diiodopropane to form the thioethers 3-5 and 7, respectively. Protonation of 2 results in the formation of the thiolactam 9. Disulfide 6 reacts with Cl_2 in the presence of FeCl₃ to yield the sulfenyl chloride 8. C-S bond formation (\rightarrow 10) is observed by treating 8 with Me₃SiCN. The gold(I) complex 11 is formed from 2 and Ph₃PAuCl. 11 crystallizes in the monoclinic space group $P2_1/n$ and contains a linear P-Au-S unit. The reaction of 1 with KNCO leads after protonation to the perfluor-inated lactam 12 and the cyanuric acid derivative 13.

2,2,4,4-Tetrakis(trifluormethyl)-1,3-dithietan (1), das als dimeres Hexafluorthioaceton angesehen werden kann, ist sehr leicht aus Hexafluorpropen und elementarem Schwefel in Gegenwart von KF zugänglich¹⁾.

Von 1 sind Cycloadditionen, En-Reaktionen, Diels-Alder-Reaktionen, Oxidationen und Insertionsreaktionen bekannt²⁾.

Ziel unserer Untersuchungen war es, Verbindung 1 für die Synthese neuer Trifluormethyl-substituierter CNS-Heterocyclen einzusetzen.

Reaktion von 1 mit KNCS und Folgeprodukte

2,2,4,4-Tetrakis(trifluormethyl)-1,3-dithietan (1) reagiert mit Kaliumthiocyanat in 1,2-Dimethoxyethan (DME) zu dem Kaliumsalz des 4-Mercapto-2,2,5,5-tetrakis(trifluormethyl)- Δ^3 -thiazolins (2) und Schwefel.

Der Fortgang der Reaktion läßt sich am besten durch ¹⁹F-NMR-Messungen verfolgen. Auf Kosten der Intensität des Singuletts für 1 (-72.7 ppm) entstehen die zwei Septetts des Produkts (-65.0 und -73.1 ppm). Nach etwa zwei Tagen Reaktionszeit bei Raumtemperatur beträgt die integrale "spektroskopische" Ausbeute an 2 55–60%. Durch Oxidation mittels Brom läßt sich 2 in das Disulfid 6 überführen, das dann in 55 proz. Ausbeute isoliert werden kann. Das Salz selbst kann als DME-Solvat in Form dunkelgelber feiner Kristallplättchen ausgefällt werden. Allerdings gelingt hier die Isolierung des kristallinen Salzes nur in mäßiger Ausbeute (35%). Aus der Mutterlauge kann durch oxidative Aufarbeitung noch das Disulfid 6 isoliert werden.

Die hier beschriebene Umsetzung von 1 mit KNCS nimmt einen völlig anderen Verlauf als die von uns vor einigen Jahren gefundene Reaktion von Hexafluoraceton mit KNCS³⁾. Es ist bemerkenswert, daß die Reaktion extrem lösungsmittelabhängig ist. Umsetzungen in THF oder CH₃CN zeigen eine viel geringere Produktselektivität, selbst unter Bedingungen der Phasentransferkatalyse mit 18-Krone-6. Eine gewisse Ausbeutesteigerung (60%) wurde erreicht durch Verwendung "nackter" Thiocyanat-Ionen in Form von $[(Ph_3P)_2N]^+NCS^{-4}$. (In 2a ist K⁺ durch $[(Ph_3P)_2N]^+$ ersetzt.)

Bromessigsäure-methylester, Benzylbromid, 3-Brom-1phenylpropen und 1,3-Diiodpropan reagieren mit 2 ausschließlich und quantitativ unter Addition an das Schwefel-Atom zu den Thioethern 3-5 und 7. Die Protonierung erfolgt dagegen am Stickstoff und liefert das Thiolactam 9 als stabiles Tautomer. Die Verbindungen 3-5 und 9 lassen sich leicht durch Sublimation im Vakuum reinigen. Aufgrund des hohen Substitutionsgrades mit Trifluormethylgruppen haben die Thiazolinringe eine hohe Hydrolysebeständigkeit, insbesondere gegenüber Säuren, wie sie schon bei dem homologen Imidazolin beobachtet wurde⁵⁾.

6 läßt sich mit einem Überschuß an Chlor in Gegenwart katalytischer Mengen $FeCl_3$ quantitativ zum Sulfenylchlorid **8** spalten. Der exocyclische Schwefel in dieser Verbindung ist in seiner Reaktivität umgepolt. Eine erste C – S-Verknüpfung beobachtet man bei der Reaktion von **8** mit Trimethylsilylcyanid zum Thiocyanat **10**. Das Anion von **2** kann auch als Ligand in Metallkomplexe eingeführt werden. Durch Reaktion von **2** mit (Triphenylphosphan)gold(I)chlorid erhielten wir in guter Ausbeute den Komplex **11**.

Gold(I)-Verbindungen werden bei der Behandlung von Polyarthritis eingesetzt. Bewährt haben sich in der Praxis lipidlösliche Phosphangold(I)-thiolate wie beispielsweise Auranofin⁶⁾. 11 besitzt einige wichtige Strukturmerkmale des Auranofins⁷⁾ und hat Modellcharakter. Durch Einführung der CF₃-Gruppen in 11 sollte man eine Steigerung der Lipophilie erwarten. Zusammenfassend kann festgehalten werden, daß durch den leichten Zugang von 2 sich rasch eine Folgechemie entwickeln wird, die sich durch folgende Vorteile ausweisen sollte:

- 1. Eine 100 proz. Regioselektivität in den Produkten bei der Differenzierung zwischen den beiden nucleophilen Zentren Schwefel und Stickstoff.
- Die Möglichkeit der Umpolung des exocyclischen Schwefels, so daß Kopplungsreaktionen auch mit organischen Nucleophilen, wie am Beispiel 10 gezeigt, zugänglich werden.
- 3. Die Möglichkeit des Einsatzes von 2 und 8 für die Darstellung von Übergangsmetallkomplexen.

Kristallstruktur von 11

Geeignete Einkristalle von 11 für eine Röntgenstrukturanalyse erhielten wird durch Umkristallisieren des Rohprodukts aus THF/Methanol. Abb. 1 zeigt ein Molekül 11 im Kristall. Die weiche Lewissäure (Au⁺) ist ausschließlich über Schwefel [Au-S(2) 231.2, vgl. Au···N(3) 316.5 pm] an den Liganden koordiniert. Das zum Proton isolobale Fragment Ph₃PAu⁺ verhält sich bei der Differenzierung zwischen den beiden nucleophilen Zentren (S, N) des ambidenten Anions

Tab. 1. Atomkoordinaten (× 10⁴) und äquivalente isotrope thermische Parameter (× 10⁻¹) [pm²] von 11

	x	у	Z	U(eq)
Au	289.2(1)	1190.0(3)	1451.6(1)	50(1)
Р	1206(1)	1845(2)	733(1)	46(1)
C(11)	1655(3)	203(8)	347(3)	47(2)
C(12)	1850(5)	182(10)	-357(4)	67(3)
C(13)	2239(5)	-1066(11)	-613(5)	82(4)
C(14)	2418(5)	-2277(11)	-160(6)	80(4)
C(15)	2206(5)	-2297(10)	538(6)	78(3)
C(16)	1826(4)	-1053(9)	792(4)	62(3)
C(21)	855(4)	3016(8)	-39(3)	47(2)
C(22)	160(5)	2660(11)	-401(4)	82(3)
C(23)	-107(6)	3496(11)	-1005(6)	95(4)
C(24)	299(5)	4707(10)	-1236(4)	72(3)
C(25)	974(5)	5051(11)	-890(5)	84(4)
C(26)	1259(5)	4212(10)	-279(4)	75(3)
C(31)	1975(4)	2902(8)	1226(3)	48(2)
C(32)	2710(4)	2888(9)	1016(4)	64(3)
C(33)	3282(5)	3732(10)	1387(5)	80(3)
C(34)	3116(5)	4641(10)	1964(5)	80(3)
C(35)	2394(6)	4666(11)	2181(4)	80(3)
C(36)	1823(4)	3801(8)	1816(4)	62(3)
S(1)	-793(1)	3167(3)	4107(1)	71(1)
S(2)	-655(1)	457(3)	2168(1)	68(1)
C(2)	-60(4)	3808(8)	3534(3)	55(2)
N(3)	-75(3)	2897(7)	2892(3)	53(2)
C(4)	-557(4)	1799(8)	2852(3)	46(2)
C(5)	-1088(4)	1660(8)	3467(4)	58(3)
C(6)	-993(7)	109(11)	3884(5)	84(4)
F(61)	-1322(4)	-1047(6)	3503(3)	106(2)
F(62)	-264(4)	-194(7)	4029(4)	115(3)
F(63)	-1308(4)	171(8)	4510(3)	140(3)
C(7)	-1925(5)	1922(14)	3172(6)	94(4)
F(71)	-2226(3)	846(7)	2754(4)	116(3)
F(72)	-1986(3)	3212(8)	2799(5)	140(4)
F(73)	-2352(3)	2048(11)	3731(4)	166(4)
C(8)	736(6)	3625(11)	3946(5)	76(3)
F(81)	860(3)	2174(7)	4117(3)	100(2)
F(82)	1281(3)	4093(7)	3572(3)	106(3)
F(83)	785(3)	4398(7)	4570(3)	113(3)
C(9)	-196(7)	5467(11)	3330(6)	85(4)
F(91)	-860(4)	5640(6)	2937(3)	111(3)
F(92)	-219(5)	6344(6)	3925(3)	133(3)
F(93)	326(4)	6053(6)	2948(3)	115(3)

erwartungsgemäß anders als das Proton. Die lineare P-Au-S-Bindung [178.4(1)°] ist typisch für Gold(I)-Komplexe⁸. Die Bindung C(4) – N(3) [128.0(9) pm] kann als "Doppelbindung" gewertet werden. In der Verbindung (CF₃)₂CSC(NH)C(NMe₂)N hat man einen vergleichbaren Wert [129.9(5) pm] gefunden⁹. Der weitgehend planare Thiazolinring liegt gemeinsam mit dem Fragment P-Au-S(2) in einer Ebene (durchschnittliche Abweichung der Atome von der besten Ebene 2.5 pm). In den Tab. 1–3 sind die Atomkoordinaten sowie Bindungslängen und -winkel von 11 angegeben.

Abb. 1. Molekülstruktur von 11 im Kristall (Radien willkürlich, H-Atome weggelassen)

Tab. 2. Bindungslängen [pm] in 11

Au-P	225.9 (2)	Au-S(2)	231.2 (2)
P-C(11)	181.5 (7)	P-C(21)	181.6 (7)
P-C(31)	181.5 (7)	C(11)-C(12)	137.6 (10)
C(11)-C(16)	138.7 (10)	C(12)-C(13)	139.3 (13)
C(13)-C(14)	136.7 (13)	C(14)-C(15)	137.3 (15)
C(15)-C(16)	138.2 (12)	C(21) - C(22)	137.8 (10)
C(21)-C(26)	136.3 (11)	C(22)-C(23)	137.8 (13)
C(23)-C(24)	136.7 (13)	C(24)-C(25)	133.5 (12)
C(25) - C(26)	139.8 (12)	C(31)-C(32)	138.8 (10)
C(31)-C(36)	138.8 (10)	C(32)-C(33)	138.1 (11)
C(33)-C(34)	138.1 (13)	C(34)-C(35)	137.0 (14)
C(35) - C(36)	138.5 (12)	S(1) - C(2)	183.2 (8)
S(1)-C(5)	181.3 (7)	S(2)-C(4)	172.0 (7)
C(2) - N(3)	142.6 (9)	C(2) - C(8)	154.3 (12)
C(2) - C(9)	151.0 (12)	N(3)-C(4)	128.0 (9)
C(4) - C(5)	154.1(10)	C(5)-C(6)	155,9 (12)
C(5) - C(7)	154.3 (12)	C(6)-F(61)	133.2 (11)
C(6)-F(62)	131.9 (14)	C(6)-F(63)	132.9 (12)
C(7) - F(71)	129.8 (13)	C(7) - F(72)	132.0 (15)
C(7) - F(73)	133.8 (14)	C(8)-F(81)	131.9 (11)
C(8)-F(82)	130.1 (11)	C(8)-F(83)	133.2 (10)
C(9)-F(91)	133.0 (12)	C(9) - F(92)	134.2 (12)
C(9)-F(93)	131.4 (13)	, , - ()	(/
/	• • •		

Reaktion von 1 mit KNCO

Die Reaktion von 1 mit Kaliumcyanat in siedendem Acetonitril ist deutlich komplexer als die Umsetzung mit KNCS.

Dabei entstehen neben 12 auch schwefelfreie Produkte, wie beispielsweise das Derivat 13 der Cyanursäure, in dem eine Carbonyl-Einheit durch eine Bis(trifluormethyl)methylen-Einheit ersetzt ist. Die Bildung von 13 ist auch bei der

Tab. 3. Bindungswinkel [] in 11

langsamen Zersetzung von $(F_3C)_2C(NCO)NH_2$ beobachtet worden¹⁰⁾.

Die Gewinnung von sauberen Produkten gelingt erst nach Protonierung der salzartigen Zwischenstufen. Bei sorgfältiger Aufarbeitung lassen sich 12 und 13 in passablen Ausbeuten gewinnen. So erhält man aus 50 g 1 etwa 22 g des erstmalig synthetisierten perfluorierten Lactams 12 und etwa 11 g des bekannten Cyanursäurederivats 13. Die Komplexizität der Reaktion wird auch dadurch deutlich, daß außer elementarem Schwefel auch die gasförmigen Nebenprodukte COS und $(F_3C)_2CFNCO$ nachgewiesen werden können (IR, MS, ¹⁹F-NMR).

Wir danken dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und der Stiftung Volkswagenwerk für die Unterstützung dieser Arbeit, Herrn Professor K. Kühlein und Herrn Dr. G. Siegemund von der Hoechst AG für Ausgangsverbindungen.

Experimenteller Teil

Alle Arbeiten wurden unter N_2 und in getrockneten Lösungsmitteln durchgeführt. – NMR: Bruker AP 250 und WP 80 SY. – MS: Finnigan MAT 8230. – IR: Perkin Elmer 180 und 325. – Elementaranalysen: Analytisches Labor des Instituts für Anorganische Chemie der Universität Göttingen.

2,2,4,4-Tetrakis(trifluormethyl)-1,3-dithietan (1) wurde aus Schwefel und Hexafluorpropen in Gegenwart von Kaliumfluorid hergestellt¹.

Anmerkungen zu den Spektren: Die IR-Absorptionen der endocyclischen C=N-Bindungen findet man erwartungsgemäß bei relativ niedrigen Wellenzahlen als scharfe Banden im Bereich von $1595-1630 \text{ cm}^{-1}$. Das Anion in 2 zeigt eine Absorption bei 1510 cm⁻¹. – Die ¹⁹F-NMR-Spektren zeigen für die beiden unterschiedlichen (F₃C)₂-Gruppierungen in den Verbindungen 2–12 jeweils ein Septett mit einer ⁶J_{FF}-Kopplung von 2.8 Hz.

2,5-Dihydro-4-mercapto-2,2,5,5-tetrakis(trifluormethyl)thiazol; DME-Solvat des Kaliumsalzes (2): Eine Lösung von 100 g KSCN (1.02 mol) in 500 ml trockenem und entgastem Dimethoxyethan wird nach Zugabe von 200 g 1 (0.55 mol) bei Raumtemp. gerührt. Nach 3 d hat sich eine Suspension eines gelben Feststoffes in einer orangefarbenen Lösung gebildet. Das ¹⁹F-NMR zeigt kaum noch Edukt, sondern vielmehr das Vorhandensein von 2 (55-60% spektroskopische Ausbeute). Zur Isolierung des Salzes werden alle flüchtigen Bestandteile i. Vak. bei 50°C entfernt. Das zurückbleibende Öl wird nacheinander mit 3 \times 180 ml Et₂O (N₂-gesättigt, peroxidfrei) digeriert und die rote Lösung von gelben ungelösten Anteilen dekantiert. Die vereinigten Etherextrakte werden erneut zu einem roten Öl i. Vak. eingeengt, das schließlich in 120 ml CH₂Cl₂ aufgenommen wird. Anschließend wird unter Rühren mit 700 ml CCl4 verdünnt, wobei der größte Teil 2 in Form orangegelber Plättchen ausgefällt wird. Die Suspension wird noch auf 600 ml eingeengt und das ausgefallene kristalline Produkt zügig bei 0°C über eine Filternutsche abgetrennt und mit 300 ml CCl₄/CH₂Cl₂ (8:1) gewaschen. Man erhält 70-75 g dunkelgelbe Kristalle, die i. Vak. bei $60-90^{\circ}$ C einen Teil des komplexgebundenen DME verlieren Ausb. 27-30%, Zers.-P. 250°C. – IR: $\tilde{v} = 1510 \text{ cm}^{-1}$ st (C=N), 1200–1250 sst (C-F). - FD-MS (neg. FD): $m/z = 390 (C_7 F_{12} NS_2)$. - ¹⁹F-NMR (CD₃CN): $\delta = -73.1$ sept, -65.0 sept (${}^{6}J_{FF} = 2.8$ Hz). - ${}^{13}C_{-1}$ NMR (CD₃CN): $\delta = 187.5$, 123.7 q (¹ $J_{CF} = 284.7$ Hz); 89.5 sept, 83.2 sept (${}^{2}J_{CF} = 29.1$ Hz); 72.4 und 58.9 (DME).

$$C_9H_3F_{12}KNOS_2$$
 (474.3) (2) · 1/2 DME Ber. C 20.3 H 1.0
Gef. C 20.2 H 0.6

Oxidative Aufarbeitung der Mutterlauge: Das oben verbliebene CCl_4 -Filtrat wird bei 0°C mit 20 g Brom versetzt und das Lösungsmittel anschließend i. Vak. entfernt. Aus dem halbfesten Rückstand werden sämtliche bis $150^{\circ}C/10^{-2}$ mbar flüchtigen Anteile gesammelt, und das erhaltene Öl wird durch Digerieren und Umkristallisieren aus MeCN/CH₂Cl₂ (10:1) gereinigt. Man erhält zusätzlich zu 2 noch 31 g farblose Kristalle des Disulfids 6.

Bis(triphenylphosphoranyliden)ammonium-2,5-dihydro-2,2,5,5-tetrakis(trifluormethyl)thiazol-4-thiolat (2a): Eine Lösung von 11.92 g (20 mmol) $[(Ph_3P)_2N]^+SCN^-$ und 7.28 g (20 mmol) 1 in 100 ml MeCN wird 8 h unter Rückfluß erhitzt und anschließend auf -30° C abgekühlt. Der ausgefallene Schwefel und andere schwerlösliche Nebenprodukte werden durch Filtration abgetrennt und das Filtrat zu einem Öl eingeengt. Umkristallisieren aus CH₂Cl₂/Et₂O (1:2) liefert die reine kristalline Verbindung **2a**. Ausb. 11.1 g gelbe Kristalle (69%), Schmp. 180–181°C. – IR: $\tilde{v} = 1500$ cm⁻¹ st (C = N), 1205 sst (C-F). – FD-MS (neg. FD): m/z = 390 (C₇F₁₂NS₂); (pos. FD) m/z = 538 [(Ph₃P)₂N]. – ¹⁹F-NMR (CDCl₃): $\delta = -73.2$ sept, -65.3 sept (⁶J_{FF} = 2.8 Hz). – ¹³C-NMR (CDCl₃), Signale des Anions: $\delta = 185.9$, 122.7 q (¹J_{CF} = 286.2 Hz); 88.9 sept, 82.2 sept (²J_{CF} = 29.2 Hz). – ³¹P-NMR (CDCl₃, 85 proz. H₃PO₄ ext.): $\delta = 21.5$.

$$\begin{array}{c} C_{43}H_{30}F_{12}N_2P_2S \ (928.5) & \mbox{Ber. C} 55.6 \ H \ 3.2 \\ & \mbox{Gef. C} 56.1 \ H \ 3.1 \end{array}$$

Bis (2,5-dihydro-2,2,5,5-tetrakis (trifluormethyl)-4-thiazolyl) disulfid (6): 9.50 g (20 mmol) 2 werden in 50 ml MeCN gelöst. Bei 0°C werden 1.92 g (12 mmol) Brom innerhalb von 10 min zugetropft. Es wird nach 15 min. bei Raumtemp. gerührt und anschließend das gesamte Lösungsmittel i. Vak. entfernt. Aus dem Rückstand wird 3 bei 80°C/10⁻² mbar heraussublimiert und aus MeCN/CH₂Cl₂ (3:1) umkristallisiert. Ausb. 7.5 g farblose Kristalle (96%), Schmp. 66°C. – IR: $\tilde{v} = 1625 \text{ cm}^{-1}$ st (C=N), 1200–1280 sst (C-F). – FI-MS: m/z = 780 (M). – EI-MS: m/z (%) = 780 (M, 35), 761 (M – F, 25), 711 (M – CF₃, 20), 390 (1/2 M, 90), 113 (SCCF₃, 100), 69 (CF₃, 90). – ¹³C-NMR (CDCl₃): $\delta = 168.3$; 121.1 q (¹J_{CF} = 286.0 Hz), 91.5 sept, 80.1 sept (²J_{CF} = 31.3 Hz). – ¹⁹F-NMR (CDCl₃): $\delta = -72.8$ sept, -66.1 sept (⁶J_{FF} = 2.8 Hz).

4-(Cinnamylthio)-2,5-dihydro-2,2,5,5-tetrakis(trifluormethyl)thiazol (5): 10.40 g (22 mmol) 2 und 3.94 g (20 mmol) 3-Brom-1phenylpropen (Cinnamylbromid) werden 3 h bei 40°C in 60 ml MeCN gerührt. Anschließend wird das Lösungsmittel i. Vak. entfernt. Aus dem Rückstand sublimiert 4 bei 90°C/10⁻² mbar. Ausb. 8.7 g blaßgelbe Kristalle (86%), Schmp. 74°C. – IR: $\tilde{v} = 1600$ cm⁻¹ st (C=N), 1210–1250 sst (C–F). – FI-MS: m/z = 507(M). – EI-MS: m/z (%) = 507 (M, 18), 117 (PhC₃H₄, 100). – ¹H-NMR (CDCl₃): $\delta = 7.32$ s (5H, Ph); 6.71 d (1H, = CH–Ph, ³J_{HH} = 15.75 Hz); 6.16 t von d (1H, H₂CCH=CH, ³J_{HH} = 7.10, ⁴J_{HH} = 0.85 Hz). – ¹⁹F-NMR (CDCl₃): $\delta = -72.8$ sept, –66.4 sept (⁶J_{FF} = 2.8 Hz). – ¹³C-NMR (CDCl₃): $\delta = 171.7$, 136.3, 136.0, 128.7, 128.5, 126.5, 120.2, 37.3, 121.4 q (¹J_{CF} = 286.2 Hz), 92.0 sept, 81.3 sept (²J_{CF} = 31.2 Hz).

$$\begin{array}{ccc} C_{16}H_9F_{12}NS_2 \ (507.3) & \mbox{Ber. C } 37.9 \ \mbox{H } 1.8 \\ & \mbox{Gef. C } 38.0 \ \mbox{H } 1.9 \end{array}$$

[2,5-Dihydro-2,2,5,5-tetrakis(trifluormethyl)-4-thiazolylthio]essigsäure-methylester (3): Eine Lösung von 10.40 g (22 mmol) 2 und 3.06 g (20 mmol) Bromessigsäure-methylester in 60 ml MeCN wird 3 h bei Raumtemp. gerührt. Anschließend wird das Lösungsmittel bei Raumtemp. unter vermindertem Druck entfernt. Aus dem Rückstand sublimiert 3 bei 60° C/10⁻¹ mbar an einen auf -15° C gekühlten Sublimationsfinger. Ausb. 7.5 g farblose watteartige Kristalle (81%), Schmp. 47°C. – IR: $\tilde{v} = 1722 \text{ cm}^{-1}$ st (C=O), 1600 st (C=N), 1215–1250 sst (C-F). – FI-MS: m/z = 463 (M). – EI-MS: m/z (%) = 463 (M, 45), 404 (M – CO₂Me, 45), 113 (SCCF₃, 45), 59 (CO₂Me, 100) und weitere Ionen. – ¹⁹F-NMR (CDCl₃): $\delta = -72.9 \text{ sept}$, -66.5 sept ($^{6}J_{\text{FF}} = 2.8 \text{ Hz}$). – ¹H-NMR (CDCl₃): $\delta = 3.97 \text{ s}$ (2H, SCH₂), 3.75 s (3H, OCH₃). – ¹³C-NMR (CDCl₃): $\delta = 171.4$, 166.4, 121.3 q ($^{1}J_{\text{CF}} = 285.9$), 91.9 sept, 80.9 sept ($^{2}J_{\text{CF}} = 30.9 \text{ Hz}$), 53.0, 36.1.

$$C_{10}H_5F_{12}NO_2S_2$$
 (463.2) Ber. C 25.9 H 1.1
Gef. C 26.1 H 1.1

4-(Benzylthio)-2,5-dihydro-2,2,5,5-tetrakis(trifluormethyl)thiazol (4): Eine Lösung von 10.40 g (22 mmol) 2 und 3.42 g (20 mmol) Benzylbromid in 60 ml MeCN wird 1 h auf 60°C erhitzt. Anschlie-Bend wird das Lösungsmittel i. Vak. entfernt. Aus dem Rückstand wird 4 durch Sublimation bei 80 $C/10^{-2}$ mbar gewonnen. Ausb. 8.1 g blaßgelbe Kristalle (84%), Schmp. 80°C. – IR: $\tilde{v} = 1595$ cm⁻¹ st (C=N), 1200–1260 sst (C-F). – FI-MS: m/z = 481 (M). – EI-MS: m/z (%) = 481 (M, 25), 412 (M – CF₃, 5), 91 (PhCH₂, 100). – ¹H-NMR (CDCl₃): $\delta = 7.32$ s (5H, Ph), 4.40 s (2H, SCH₂). – ¹⁹F-NMR (CDCl₃): $\delta = -72.9$ sept, –66.4 sept (⁶*J*_{FF} = 2.8 Hz). – ¹³C-NMR (CDCl₃): $\delta = 171.8$, 133.8, 129.2, 128.8, 128.3, 121.4 q (¹*J*_{CF} = 285.9 Hz), 92.0 sept, 81.2 sept (²*J*_{CF} = 30.5 Hz).

 $\begin{array}{rl} C_{14}H_{7}F_{12}NS_{2} \ (481.3) & \mbox{Ber. C } 34.9 \ \mbox{H } 1.5 \\ & \mbox{Gef. C } 35.1 \ \mbox{H } 1.6 \end{array}$

4,4'-[1,3-Propandiylbis(thio)bis[2,5-dihydro-2,2,5,5-tetrakis(trifluormethyl)thiazol] (7): Eine Lösung von 11.90 g (25 mmol) 2 und 2.96 g (10 mmol) 1,3-Diiodpropan in 80 ml MeCN wird 2 h unter Rückfluß erhitzt. Anschließend wird das Lösungsmittel i. Vak. entfernt. Aus dem Rückstand wird 7 bei 90−100°C/10⁻² mbar heraussublimiert und aus MeCN/CH₂Cl₂ (3:1) umkristallisiert. Ausb. 7.5 g farblose Kristalle (92%), Schmp. 73−74°C. – IR: $\tilde{v} = 1600$ cm⁻¹ st (C=N), 1200−1260 sst (C-F). – FI-MS: m/z = 822 (M). – EI-MS: m/z (%) = 822 (M, 5), 803 (M – F, 5), 431 (M – C₇F₁₂NS₂, 65), 416 (C₉H₂F₁₂NS₂, 100). – ¹H-NMR (CDCl₃): $\delta =$ 3.31 t (4H, SCH₂, ³J_{HH} = 6.84 Hz), 2.16 quint (2H, CH₂, ³J_{HH} = 6.84 Hz). – ¹⁹F-NMR (CDCl₃): $\delta = -72.9$ sept, −66.5 sept (⁶J_{FF} = 2.9 Hz). – ¹³C-NMR (CDCl₃): $\delta = 172.3$, 121.5 q (¹J_{CF} = 285.5 Hz), 92.0 sept, 81.3 sept (²J_{CF} = 31.3 Hz), 32.9, 26.4.

 $\begin{array}{rl} C_{17}H_6F_{24}N_2S_4 \mbox{ (822.4)} & \mbox{Ber. C 24.8 H 0.7 N 3.4} \\ & \mbox{Gef. C 25.2 H 0.7 N 3.3} \end{array}$

2,5-Dihydro-2,2,5,5-tetrakis(trifluormethyl)-4-thiazolidinthion (9): Eine Lösung von 9.50 g (20 mmol) 2 in 60 ml MeCN wird mit 2.85 g (25 mmol) Trifluoressigsäure bei Raumtemp. versetzt. Die entstandene Suspension wird i. Vak. eingedampft. Aus dem Rückstand sublimiert bei 50°C/10⁻² mbar 9 in Form blaßgelber Kristalle an einen Sublimationsfinger. Ausb. 7.0 g blaßgelber Kristalle (90%), Schmp. 123–124°C. – IR: $\tilde{v} = 3120$ cm⁻¹ st (NH), 1200–1300 sst (C–F). – FI-MS: m/z = 391 (M). – EI-MS: m/z (%) = 391 (M, 50), 322 (M – CF₃, 50), 253 (M – 2CF₃, 15), 208 [M – (F₃C)₂CS – H, 15], 113 (SCCF₃, 70), 69 (CF₃, 100). – ¹⁹F-NMR (CD₃CN): $\delta = -73.0$ sept, -67.2 sept (⁶J_{FF} = 2.8 Hz). – ¹H-NMR (CD₃CN): $\delta = 7.61$ br (1 H, NH). – ¹³C-NMR (CD₃CN): $\delta = 189.7$, 122.4 q (¹J_{CF} = 286.7 Hz), 122.1 q (¹J_{CF} = 286.7 Hz), 75.4 sept (²J_{CF} = 34.0 Hz), 72.8 sept (²J_{CF} = 29.2 Hz).

$$\begin{array}{rl} C_{7}HF_{12}NS_{2} \mbox{(391.2)} & \mbox{Ber. C 21.4 H 0.3} \\ & \mbox{Gef. C 21.2 H 0.4} \end{array}$$

2,5-Dihydro-2,2,5,5-tetrakis(trifluormethyl)-4-thiazolsulfenylchlorid (8): 46.8 g (60 mmol) 6 und 80 g Eisenpulver werden in einem kleinen Monel-Zylinder (100 ml, Prüfdruck 300 bar) gegeben und 43.0 g (600 mmol) Chlor aufkondensiert. Der Autoklav wird 24 h auf 120°C erhitzt und anschließend bei Raumtemp. entspannt. Das reine Sulfenylchlorid wird durch zweimalige Destillation des zurückbleibenden Öls gewonnen. Ausb. 46.5 g eines gelben Öls (91%), Sdp. 53°C/20 mbar. – IR: $\tilde{v} = 1615 \text{ cm}^{-1}$ st (C=N), 1210–1290 sst (C-F). – FI-MS: m/z = 425 (M). – EI-MS: m/z (%) = 390 (M – Cl, 65), 208 [(F₃C)₂CNCS, 45], 113 (SCCF₃, 80), 69 (CF₃, 100). – ¹⁹F-NMR (CDCl₃): $\delta = -73.0 \text{ sept}$, -66.8 sept (⁶J_{FF} = 2.9 Hz). – ¹³C-NMR (CDCl₃): $\delta = 169.6$, 121.1 q (¹J_{CF} = 186.2 Hz), 92.1 sept, 80.2 sept (²J_{CF} = 31.3 Hz).

2;5-Dihydro-2,2,5,5-tetrakis(trifluormethyl)-4-thiazolylthiocyanat (10): 8.51 g (20 mmol) Sulfenylchlorid 8 und 2.18 g (22 mmol) Me₃SiCN werden zusammen in 50 ml CH₂Cl₂ gelöst. Die Lösung wird auf 0°C abgekühlt. Nach Zugabe von 300 mg Adogen (Aldrich) setzt die leicht exotherme Reaktion ein. Es wird noch 30 min bei

Chem. Ber. 123 (1990) 433-438

0°C, dann 4 h bei Raumtemp. gerührt und anschließend das Lösungsmittel unter vermindertem Druck entfernt. Im statischen Vakuum (30 mbar) sublimiert **10** in Form langer Nadeln an einen auf -15° C gekühlten Sublimationsfinger. Auf diese Weise gelingt die sublimative Trennung von mitgebildetem Disulfid 6. Ausb. 3.4 g farblose Nadcln (41%), Schmp. 52°C, Subl. – P. ca. 35°C/1 bar. – IR: $\tilde{v} = 2192 \text{ cm}^{-1}$ st (S–C=N), 1630 st (C=N), 1200–1240 sst (C–F). – EI-MS: m/z (%) = 416 (M, 10), 397 (M – F, 8), 347 (M – CF₃, 25), 208 [M – (F₃C)₂CS – CN, 100], 113 (SCCF₃, 55), 69 (CF₃, 65). – ¹⁹F-NMR (CDCl₃): $\delta = -72.1$ sept, -66.1 sept (⁶J_{FF} = 3.0 Hz). – ¹³C-NMR (CDCl₃): $\delta = 163.6$, 120.8 q (¹J_{CF} = 286.5 Hz), 101.2, 92.2 sept, 80.2 sept (²J_{CF} = 31.6 Hz). C₈F₁₂N₂S₂ (416.2) Ber. C 23.1 F 54.8 N 6.7 Gef. C 23.2 F 55.1 N 6.7

[2,5-Dihydro-2,2,5,5-tetrakis(trifluormethyl)-4-thiazolylthio](triphenylphosphan)gold(I) (11): 2.97 g (6.0 mmol) Ph₃PAuCl und 3.79 g (8.0 mmol) 2 werden 15 min in 60 ml entgastem THF unter Rückfluß erhitzt. Anschließend wird die Lösung i. Vak. auf 30 ml eingeengt und nacheinander mit 100 ml MeOH und 50 ml Wasser verdünnt. Das ausgefallene gelbe kristalline Rohprodukt wird abfiltriert und aus THF/MeOH umkristallisiert. Ausb. 4.5 g blaßgelbe Kristalle (88%), Schmp. 212–213°C. – IR: $\tilde{v} = 1550 \text{ cm}^{-1}$ st (C=N), 1200–1270 sst (C-F). – FD-MS: m/z = 849 (M). – ¹⁹F-NMR (CDCl₃, mit Gaußmultiplikation, GM): $\delta = -72.9$ sept ($^{6}J_{FF} = 2.9 \text{ Hz}$), –66.2 sept von d ($^{6}J_{FF} = 2.9, {}^{6}J_{PF} = 1.8 \text{ Hz}$). – ³¹P-NMR (CDCl₃, 85 proz. H₃PO₄ ext. mit GM): $\delta = 37.1$ sept ($^{6}J_{PF} = 1.8 \text{ Hz}$). – ¹H-NMR (CDCl₃): $\delta = 7.40 - 7.70$ (Ph).

 $\begin{array}{rl} C_{25}H_{15}AuF_{12}NPS_2\ (849.4) & \mbox{Ber. C}\ 35.3\ H\ 1.8\ F\ 26.9\\ & \mbox{Gef. C}\ 35.4\ H\ 1.8\ F\ 26.8 \end{array}$

2,2,5,5-Tetrakis(trifluormethyl)-4-thiazolidinon (12): Vorsicht! Im Verlauf der Reaktion entstehen die giftigen gasförmigen Nebenprodukte Carbonylsulfid und Perfluorisopropylisocyanat. - Eine Mischung aus 50 g 1 und 50 g trockenem, feingemörsertem KNCO in 300 ml MeCN wird 4.5 h unter kräftigem Rühren zum Sieden erhitzt. Danach werden bei Raumtemp. (Eiskühlung) 50 ml Trifluoressigsäure innerhalb von 10 min zugetropft (Vorsicht Gasentwicklung!). Es wird noch weitere 60 min bei Raumtemp. gerührt. Anschließend werden sämtliche flüchtigen Anteile i. Vak. bei Raumtemp. entfernt. Aus dem zurückbleibenden orangefarbenen Öl lassen sich 23.5 g Rohprodukt 12 bei $80 - 100^{\circ}$ C/ 10^{-2} mbar heraussublimieren. 12 wird aus CHCl₃/THF (3:1) umkristallisiert. Ausb. 21.6 g farblose Kristalle (42%), Schmp. 117–118°C. – IR: \tilde{v} = 3215 cm⁻¹ m, 3120 st (NH), 1745 sst (C=O), 1200-1260 sst (C-F). - FI-MS: m/z (%) = 375 (M, 100), 306 (M - CF₃, 35). -EI-MS: m/z (%) = 313 (M - HNCO, 30), 306 (M - CF₃, 100), 113 (SCCF₃, 55), 69 (CF₃, 60). - ¹H-NMR ([D₆] Aceton): $\delta = 8.66$ br. (1 H, NH). $- {}^{19}$ F-NMR ([D₆]Aceton): $\delta = -74.1$ sept, -67.5sept (${}^{6}J_{FF} = 2.8$ Hz). $- {}^{13}$ C-NMR ([D₆] Aceton): $\delta = 162.5, 122.8$ q (${}^{1}J_{CF}$ = 286.0 Hz), 122.4 q (${}^{1}J_{CF}$ = 286.0 Hz), 67.7 sept (${}^{2}J_{CF}$ = 34.1 Hz), 64.1 sept ($^{2}J_{CF} = 30.4$).

 $\begin{array}{rl} C_7 HF_{12} NOS \mbox{ (375.1)} & \mbox{Ber. C } 22.4 \mbox{ } F \mbox{ } 60.8 \mbox{ } S \mbox{ } 8.5 \mbox{ } \\ & \mbox{Gef. C } 22.8 \mbox{ } F \mbox{ } 60.1 \mbox{ } S \mbox{ } 8.5 \mbox{ } \end{array}$

5,6-Dihydro-4,4-bis(trifluormethyl)-1,3,5-triazin-2,4(1H,3H)dion (13): Der Sublimationsrückstand aus der Darstellung von 12 wird zu einem groben Pulver verrieben und 18 h im Soxhlet-Extraktor mit Ether extrahiert. Der Etherextrakt wird eingedampft und der Rückstand bei 135 – 160°C/10⁻² mbar sublimiert. Die Umkristallisation des Sublimats aus Aceton liefert 13 als Aceton-Solvat in Form großer farbloser Prismen. Ausb. 11.1 g farblose kristalline Substanz (sublimiert, solvatfrei), Schmp. 226°C (Lit.¹⁰⁾ 223 – 225°C). – IR: $\tilde{v} = 3230$ cm⁻¹ st, 3180 st, 3100 st (NH), 1735 sst, 1705 sst (C=O), 1220 - 1260 sst (C-F). - FI-MS: m/z = 252(M). – EI-MS: m/z (%) = 182 (M – HCF₃, 100), 96 (F₃C – CCNH, 55), 69 (CF₃, 50). – ¹⁹F-NMR ([D₆]Aceton): δ = $-80.0. - {}^{1}H$ -NMR ([D₆] Aceton): $\delta = 9.64$ (1 H, NH), 8.91 (2H, NH). $- {}^{13}$ C-NMR ([D₆]Aceton): $\delta = 150.6, 122.4 \text{ q} ({}^{1}J_{CF} = 289.8 \text{ s})$ Hz), 71.6 sept (${}^{2}J_{CF} = 33.1$ Hz).

> C₅H₃F₆N₃O₂ (251.1) Ber. C 23.9 H 1.2 N 16.7 Gef. C 23.6 H 1.3 N 16.6

Röntgenstrukturanalyse von 11¹¹: Zur Datensammlung wurde ein Stoe-Siemens-Vierkreisdiffraktometer mit graphitmonochromatisierter Mo- K_{α} -Strahlung ($\lambda = 71.069$ pm) benutzt. Kristalldaten: $C_{25}H_{15}AuF_{12}NPS_2$, $M_r = 849.4$, monoklin, Raumgruppe $P2_1/n$, $a = 1765.7(2), b = 873.15(12), c = 1845.3(3) \text{ pm}, \beta = 95.29(2)^{\circ},$ $Z = 4, U = 2.833 \text{ nm}^3, D_x = 1.99 \text{ Mg m}^{-3}, \mu = 6.2 \text{ mm}^{-1}, F(000)$ = 4704. - Datensammlung und -reduktion: 4994 Intensitäten im Profile-Fitting-Verfahren, 20max 50°; 4962 unabhängige Reflexe, davon 3850 mit $F > 4\sigma(F)$ für alle Berechnungen verwendet (Programmsystem SHELX, von seinem Autor Prof. G. M. Sheldrick modifiziert). Absorptionskorrektur durch \u03c4-Scans, mit Transmissionen 0.42 - 0.99 (Kristallgröße $0.8 \times 0.6 \times 0.25$ mm). Gitterkonstanten verfeinert aus 20-Werten von 58 Reflexen im Bereich $20-25^{\circ}$, - Strukturlösung und -verfeinerung: Schweratommethode, anschließend anisotrope Least-Squares-Verfeinerung aller Nichtwasserstoffatome, H-Atome mit Riding-Modell, R = 0.041, $R_w =$ 0.038, Gewichtsschema $w^{-1} = \sigma^2(F) + 0.00035 F^2$, 379 Parameter, S = 1.4, max. $\Delta/\sigma = 0.001$, max. $\Delta \rho = 0.8 \times 10^{-6} e \text{ pm}^{-3}$.

CAS-Registry-Nummern

1: 791-50-4 / 1 · (Ph₃P)₂N^{\oplus}: 124177-46-4 / 2: 124177-35-1 / 3: 124177-36-2 / 4: 124177-37-3 / 5: 124177-38-4 / 6: 124199-96-8 / 7: 124177-39-5 / 8: 124177-40-8 / 9: 124177-41-9 / 10: 124177-42-0 / 11: 124177-43-1 / 12: 124177-44-2 / 13: 1619-99-4 / KSCN: 33320-0 / PhCH = CHCH₂Br: 4392-24-9 / BrCH₂CO₂Me: 96-32-2 / I(CH₂)₃I: 627-31-6 / Ph₃PAuCl: 14243-64-2 / KNCO: 590-28-3 / (Ph₃P)N^{\oplus} · SCN^{\oplus} : 38420-68-7

- ¹⁾ D. C. England, J. Org. Chem. 46 (1981) 153; M. V. D. Puy, L. G. Agnello, ibid. 47 (1982) 377, und die dort zitierte Literatur.
- ²¹ W. J. Middleton, J. Org. Chem. 30 (1965) 1390; 30 (1965) 1395;
 W. J. Middleton, W. H. Sharkey, *ibid.* 30 (1965) 1384; W. J. Middleton, E. G. Howard, W. H. Sharkey, *ibid.* 30 (1965) 1375; T. Kitazume, N. Ishikawa, Chem. Lett. 1973, 267; T. Kitazume, N. Ishikawa, Bull. Chem. Soc. Jpn. 46 (1973) 3285; 48 (1975) 361; T. Kitazume, T. Otaka, R. Takei, N. Ishikawa, *ibid.* 49 (1976) 2491; A. Elsäßer, W. Sundermeyer, Chem. Ber. 118 (1985) 4553; Tetrahedron Lett. 24 (1983) 2141; K. Burger, R. Simmel, Liebigs Ann. Chem. 1984, 982; H. W. Roesky, K. S. Dhathathreyan, J. Chem. Soc., Chem. Commun. 1984, 1053; H. W. Roesky, K. S. Dhathathreyan, M. Noltemeyer, G. M. Sheldrick, Z. Naturforsch., Teil B, 40 (1985) 240; K. Burger, E. Huber, Chem.-
- ²¹ Ztg. 110 (1986) 211.
 ³¹ H. W. Roesky, J. Lucas, K. Keller, K. S. Dhathathreyan, M. Noltemeyer, G. M. Sheldrick, *Chem. Ber.* 118 (1985) 2659.
 ⁴¹ J. K. Ruff, W. J. Schlienz, *Inorg. Synth.* 15 (1974) 84.
 ⁴² W. M. M. M. Schlienz, *Chem. J. Chem. J.* 56 (1970) 1480.
- ⁵⁾ W. J. Middleton, C. G. Krespan, J. Org. Chem. 35 (1970) 1480. ⁶⁾ S. J. Berners, P. J. Sadler, Frontiers in Bioinorganic Chemistry (A. V. Xavier, Ed.), VCH Verlagsgesellschaft, Weinheim 1986, und die dort zitierte Literatur; K. C. Dash, H. Schmidbaur, Metal Ions Biol. Syst. 14 (1983) 180.
- ⁷⁾ D. T. Hill, B. M. Sutton, Cryst. Struct. Commun. 9 (1980) 679.
- ⁸⁾ H. Schmidbaur, Angew. Chem. **88** (1976) 830, Angew. Chem. Int. Ed. Engl. **15** (1976) 728.
- H. Grützmacher, N. Keweloh, H. W. Roesky, M. Noltemeyer, G. M. Sheldrick, J. Fluorine Chem. 37 (1987) 279. 9)
- ¹⁰⁾ W. J. Middleton, C. G. Krespan, J. Org. Chem. 30 (1965) 1398. ¹¹⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-54027, der Autoren und des Zeitschriftenzitats angefordert werden.

[260/89]